Check out the new RAD Lab Podcast episode #3 here
Check out the new RAD Lab Podcast episode #4 here

RAD blog

RAD / 

September 1, 2020

 / 

Steph Mundy

Keys to Developing Speed in Team Sport Athletes:

Want to be like Jake Neade able to evade players, create space and close space on the field?

Ever wished you could be like Eddie Betts and seem as if you have all the time in the word to get around your opponent?

Ever wished you had the same speed in the fourth quarter as you had in the first quarter? We have the answers for you, as we take a deep dive into speed and running mechanics for team sport athletes.

No matter whether you play Australian Rules Football, Rugby League, Cricket, Basketball or Tennis, appropriate speed and running mechanics is the key to optimal efficiency on field/court and the potential to reach higher velocities.

Some might argue ‘why would you take time to teach  team sport athletes how to run fast in a straight line, when they spend the vast majority of their time changing direction throughout the game?’. Here are some of the reasons we believe it is super important for a team sport athlete to learn how to run fast in a straight line:

  • Athletes will express linear sprinting mechanics with every lead or defensive play that they make.
  • By teaching correct technique we can create greater efficiency within an athlete. An athlete that doesn’t waste their energy through unwanted movements is able to develop greater speeds at the same or lower energy cost.
  • Athletes who work on linear sprinting mechanics will often improve their speed without the reliance on heavy resistance training.
  • A faster athlete tends to create greater space offensively and close space easily defensively.

Speed is a fundamental component of all field and court based sports, especially when looking at acceleration. Max speed however must not be over looked, even if it is rarely reached throughout a game. The greater max velocity we can reach will influence the velocity which we can achieve during acceleration. Fundamental to speed however is technique; poor technique can lead to energy leakages where an athlete is putting energy into a movement or action that has no positive benefit to their overall speed outcome. Energy leaks can come in many forms with some of them being:

  • Poor foot mechanics
  • Poor postural integrity and pelvic stability
  • Over emphasis on back side mechanics
  • Excessive forward lean
  • Excessive overarch through the spine
  • Unwanted tension throughout the body
서부원
This athlete is showing excessive overarch of the spine, excessive backside mechanics, ultimately resulting in too greater forward lean and a flat foot strike.

These are just some ways that many field and court sport athletes will waste energy when accelerating throughout the game. This accumulated waste of energy leads to greater levels of fatigue in the later stages of the game, impacting performance. Many of these factors rely on good technique as well as strength and body awareness. So what exactly do we mean by each of these points?….. Let me explain each one a little further so we can gain a greater understanding for the importance of teaching correct running mechanics. 

Poor foot mechanics:

When our foot strikes the ground during sprinting we should have what is called a ‘forefoot landing’ (landing on the front part of our foot). It is important to note that this does not mean landing on our toes, rather the ball of our foot. This means that the athletes foot should also strike just behind the knee, placing the athlete into a drive phase as soon as the foot strikes the ground.

When an athlete is striking the ground with their midfoot or worse still their heel (whilst sprinting), they are doing what we call over striding. In doing this they are putting on the breaks, of which they then have to overcome before they can accelerate forward again. This is a very slow way to run, if you imagine accelerating and then braking your car whilst driving you are basically doing the exact same thing. Not only are you slowing yourself down but you are placing a greater load and stretch on the hamstring muscle group placing them at greater risk of a strain or tear.

Poor postural integrity and pelvic stability:

This is often due to a lack of strength and a lack of body awareness, as the athlete allows the shoulders to rotate excessively in opposition to the legs, or for the trunk to slump, or lastly they allow for the hip on the swing leg side to drop (commonly referred to as a Trendelenburg gait). When the trunk is moving in opposition to the legs excessively this is wasting energy that could otherwise be used to accelerate the athlete forward. A lack of stiffness in the trunk results in a loss of stiffness in the lower limbs, often resulting in collapsing through the hip, knee and ankle, while the Trendelenburg gait exacerbates the loss of stiffness through the lower limbs, further contributing to a flat foot strike. When there is a loss of stiffness in the lower body this results in a loss of elastic energy, a form of energy used that has one of the highest speeed of usage making it very advantagious for us to use this form of energy when trying to run FAST!

Over emphasis on backside mechanics:

Once again, this type of athlete tends to have more of a heel strike on landing (resulting in pronounced breaking forces). Excessive backside mechanics also means that the athlete is extending the leg too far behind the body, creating a long lever which is SLOOOW. Ultimately this results in the athlete not gaining a high enough knee lift at the front to allow the athlete to apply high force into the ground, which would otherwise result in greater maximum velocities achieved.

Excessive forward lean:

This can be as a result of having excessive backside mechanics. Disproportionate forward lean means that the athlete doesn’t trust their elastic system to absorb and produce energy quickly. Instead they rely on strength, making the athlete heavier on the ground, losing potential energy as they collapse through the lower limbs. Stiffness and elasticity can however be trained/developed without the use of a great deal of equipment.

Excessive overarch through the spine:

This means that the athletes hips are pointed low or they have an excessively anteriorly tilted (forwards tilting) pelvis. Ultimately this decreases the available range of motion that the athlete can achieve at the front of their body, leading to excessive backside mechanics. As with excessive forward lean the lack of range at the front of the body means that the athlete is not able to produce as much force into the ground as potentially possible. It also means that the athlete is more likely to heel strike and overstride, increasing injury risk.

Unwanted tension throughout the body:

When an athlete creates tension often through their arms and neck they are putting energy into something that is not going to help them move forward faster. It is important that an athlete be relaxed so that their energy can be better used to produce greater force into the ground, allowing them to move quickly and efficiently in a smooth rhythmical manner.

٤ا
An elite sprinter showcasing correct max speed running mechanics; upright with a slight forward lean posture, high knee lift, forefoot landing, stiffness through the trunk but also a relaxed upper body.

So how can we best correct these patterns and produce a faster more efficient athlete? We do this through the use of drills where we break down the complexities of running mechanics and teach it in parts. We can then gradually put these parts together to produce a rhythmical a correct running pattern. So what are some drills that we can use.

Wall drive acceleration drills

Wall drive acceleration drills allow the athlete to develop correct posture, whilst also allowing the athlete to practice correct swing phase pattern and foot strike pattern. Progressing to resisted accelerations, also develops correct positioning and posture throughout the acceleration phase. When the band is added in it allows the athlete to maintain a good posture whilst learning to apply force into the ground correctly through movement.

Wall drive acceleration

Wall slide drill:

This drill teaches the athlete correct upright posture in max speed, along with correct lower limb mechanics as it forces the athlete to bring the leg up and forward (heel to butt) rather then allowing the leg to lag behind the body.

Wall slide drill

Step overs

https://youtu.be/nyUFLA7Fc0s

This teaches the athlete correct foot strike mechanics, teaching a forefoot landing with the foot striking just behind the knee. It also teaches the athlete the importance of speed through their foot strike, as they aggressively attack the ground. Think step over the ankle and grab the ground.

Step overs

Lastly, for us to really get fast we need to run fast and regularly run fast. So there are a few different ways that we can approach this working on acceleration speed, max speed and then the use of resisted and assisted sprinting.

Standing start/rolling start

It is important to practice various starting position and scenarios as the athlete will be required to accelerate from various means during a game. It is important however to start basic with a standing start get the mechanics and the positioning right before challenging the athlete with varying starting positions.

Max speed running

It is super important that team sport athletes still work on their max speed even though they will rarely reach max speed within a game. A greater max speed capacity will ultimately increase their acceleration capacity and overall maximum velocity they can reach. 

Resisted/assisted accelerations

Resisted accelerations are a good way to teach the athlete correct running position and force application over an extended duration, when the resistance releases it is important that the athlete is able to maintain their positioning. It also overloads the sprint forcing the athlete to apply greater levels of force into the ground then what would normally be produced. Assisted sprinting forces the neuromuscular system to work over time as the body tries to keep up with the pull of the bungy.  

It is important that these tools are used in conjunction with appropriate change of direction techniques and agility drills to allow the skill of running to be integrated with other technical skills required such as change of direction and agility based work.

These are just some of the tools that you can add to your tool box to improve your speed and running efficiency throughout the game, however if you have any specific questions or would like us to tailor a running program for you, please don’t hesitate to get in touch.

stay updated

Be the first to know all about stories, training and recovery tips and advice.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.


By clicking Sign Up, you have agreed to the RAD Privacy Policy